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EXECUTIVE SUMMARY 

 

Commuter rail systems are being introduced into many urban areas as an alternative mode to automobiles 

for commuting trips. The shift from the auto mode to rail mode is anticipated to greatly help alleviate 

traffic congestion in urban road networks. However, the right-of-way of many existing commuter rail 

systems is usually not ideally located. Since the locations of rail systems were typically chosen long ago 

to serve the needs of freight customers, the majority of current commuter rail passengers have to take a 

non-walkable connecting trip to reach their final destinations after departing even the most conveniently 

located rail stations. To make rail a more viable, competitive commuting option, a bus feeder or circulator 

system is proposed for seamlessly transporting passengers from their departing rail stations to final work 

destinations.  

The primary research challenge in modeling such a bus circulator system is to optimally 

determine a bus route and stop sequence for each circulating tour using the real-time demand information. 

In this paper, we termed this joint routing and stop optimization problem the circulator service network 

design problem, the objective of which is to minimize the total tour cost incurred by bus passengers and 

operators while minimizing the walk time of each individual bus passenger.  

A bi-level nonlinear mixed integer programming model was constructed and a tabu search 

method with different local search strategies and neighborhood evaluation methods was then developed to 

tackle the circulator service network design problem.  This exact algorithm was developed because  

the network size (number of candidate stops) for the feeder system is much smaller than that of 

an urban transit network. The small size provides some freedom to explore and improve current 

exact algorithms to solve the problem, as land use information gives us a good idea of where 

demands will be concentrated. Potential bus stops can be identified geographically before the 

service is put in place. That is also how the service is going to be operated; the transit operator 

provides users with all the candidate stops and allows them to choose a stop from the map 

according to their preference.  

Our tentative solution methods take advantage of knowing possible bus stop locations in 

advance, establishing the route information database through an enumeration process. Each route 

starts from and ends at the rail station, which is always in the route. We evaluate all possible 

combinations of candidate stops, and solve it as a TSP to get the minimum travel time. The 

database will store minimum route costs for all possible stop combinations and our solution 

method will use them as pre-calculated parameters. Our feeder system is designed so that every 
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bus leaves the station as the train leaves and comes back to the station before the next train 

arrives. The minimum travel time for each route should not exceed 30 minutes, which is the 

headway for the commuter rail. The travel cost converted from the travel time, together with the 

fixed cost for each route, will determine the route cost. For each route, we have a binary vector 

 with a dimension equal to the total number of candidate stops in route , a vector  with a 

dimension of the total number of stops covered by the route and showing the order of visits to 

stops in route , and a cost value . 

In this research, we only modeled and solved a collective circulator service network 

design problem, which describes the bus circulator operations in the origin end of workplace-to-

home commuting trips. The fleet of buses is used for picking up passengers from selected bus 

stops close to workplaces and dropping them off at the rail station during the afternoon 

commuting period. This study treated each bus circulating tour as an independent optimization 

problem without considering the cooperation and coordination between different buses in the 

fleet. From the efficiency perspective, it is much desirable to formulate a larger circulator service 

network design problem, which operates a fleet of buses as a whole instead of operating each 

individual one separately. Such a fleet-based circulator system can be readily implemented by 

using the current information and communication technologies.  
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1. INTRODUCTION 

Peak-hour congestion in urban highway networks is a long-established and hard-to-solve 

problem. Considering all the practical constraints for highway capacity expansion, many urban 

areas are implementing commuter rail systems as an alternative mode to alleviate peak-hour 

congestion in the roadway network. Currently commuter rail development and expansion 

programs are found at a number of locations in the United States. Most of these programs are 

using existing tracks or available right-of-way (ROW) in order to eliminate or reduce land 

takings, relocation effects, and the costs associated with creating an all-new ROW through dense 

metropolitan areas (Zullig & Phraner, 2000). In fact, the availability of existing rail ROW is a 

major factor in the evaluation of urban transportation options.  

However, as discussed by Grava (2003), one issue related to using existing rail 

alignments is their location. Since they were built at a different time, often to serve freight traffic 

in a rather different city layout, they do not necessarily facilitate use for current residential and 

commercial activities. Distances from potential rail stations to commuter trip destinations often 

exceed feasible walking distances. If a person wants to take the commuter rail, assume that he 

drives to the home-end rail station and gets on the rail. When he reaches the work-end station, he 

is unlikely to have another car ready to use. He may prefer to transfer to another transit mode to 

get to his final destination, since walking is just not feasible. If he uses the existing urban bus 

system, he will likely walk to the bus stop, wait for the bus to come, ride the bus to the closest 

stop to his destination, and then probably walk from the bus stop to his destination. If we 

consider the total time spent on driving, train riding, transferring, bus riding, and walking to the 

destination, the commuter rail may lose its attractiveness or even its viability as an alternative 

mode to driving.  

Minimizing access time to rail stations and final destinations thus becomes critical. We 

propose a bus feeder/circulator system to transport passengers from the rail station to their work 

destination. This feeder system has two advantages. First, it is embedded with a seamless transfer 

operation. This seamless transfer concept means that when the train arrives at the station, there is 

always a bus ready to take rail passengers to their final destinations. By providing a seamless 

transfer, we are actually eliminating both the waiting time and the possible anxiety experienced 

by transit users at the transfer point.  
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Secondly, the recent widespread adoption of smart phones might provide an innovative 

means of obtaining real-time destination data. The common practice is to design the bus route 

based upon static demand estimates for a typical day and to operate the feeder buses on a fixed 

route. In the proposed bus feeder system, the destination information is collected from mobile 

devices (such as smart phones, tablets, and laptops) on a real-time basis and passengers are 

allowed to identify their destinations among all demand zones served by the operator. Based on 

the real-time travel information, the transit operators dynamically identify optimal circulator 

routes for each and every set of passengers coming into the station. Of course, not every 

passenger will provide their destination information. Nonetheless, passengers who are not able or 

willing to provide their destination information can still use the routes that are based on other 

users’ data; as they see the benefits of providing destination information, they might start doing 

so for their own convenience. Additionally, our work also tested the system performance with 

only partial traveler information; those results are discussed later in the paper.  

From the perspective of commuter rail operators, the bus distributor system is a means to 

connect rail stations to commuter trip destinations to produce competitive overall trip times and 

potentially increase ridership. From the perspective of commuter rail users, the demand-

responsive circulator system allows them to avoid highway system congestion without losing 

access to their final destinations. Additionally, they would benefit more from this system than 

from a regular fixed-route bus system since the route is designed specifically for the particular 

set of passengers on the train. 

When solving transit network design problems, two branches of algorithms are primarily 

used: analytical optimization models and heuristic algorithms. Classical analytical optimization 

models were used in the early stages of the research on the transit route network design problem. 

These models focus on developing a continuous convex objective function under assumptions 

that simplify and idealize the transit network. By solving first-order equations of the objective 

functions in these models, optimal solutions for stop spacing, headway, frequency, or other route 

characteristics can be efficiently generated. As noted by Ceder and Wilson (1986), analytic 

methods are suited to early stage screening in the planning process or conceptual policy 

decisions where approximate design parameters are adequate but have little practical benefit in 

solving real-world problems. Heuristic solution frameworks are more often employed in solving 

real-size network problems. Chakroborty (2003) provided a detailed discussion regarding why 
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the urban transit network design problem (UTNDP) cannot be solved with exact algorithms such 

as Branch-and-Bound or Branch-and-Cut. Problems arise with inclusion of discrete decision 

variables in the UTNDP, the property of the nonlinearity of the UTNDP, and definition of logical 

conditions to better describe a realistic transit network in the mathematical program, as also 

mentioned by Baaj and Mahmassani (1990). All these facts lead to a common problem: a 

significant computational burden. 

Given the limitation of exact algorithms in solving realistic transit network design 

problems, approximation techniques—heuristics and meta-heuristics—are usually preferred in 

many practical situations. They enable one to solve the real-size network design problem in a 

reasonable time frame, compared to exact algorithms. 

Kuah and Perl (1988) present a heuristic method to solve the feeder bus network design 

problem for an optimal route set and operating frequencies to provide feeder bus service to 

access an existing rail system. Extended from the heuristics proposed by Kuah and Perl (1988), 

Martins and Pato (1998) employed a tabu search algorithm. Tabu restrictions prevent the 

replacement of a stop in its previous position for a chosen number of iterations. The 

intensification strategy of the tabu search method accentuates the search in a region of good 

solutions by decreasing the tenure of moves marked tabu. Lownes and Machemehl (2010) 

propose both exact and meta-heuristic methods to specifically address the circulator service 

network design project (CSNDP) problem by formulating a mixed integer programming 

approach with the objective accounting for transit user travel cost, transit agency operation cost, 

and social cost related to unserved demand. The exact method utilizes lower bound and 

additional stopping criteria to reduce computational effort, yet it is still suitable for small to 

medium-sized networks while the tabu search method is used to solve large networks. However, 

the solution framework based on the tabu search does not solve the CSNDP within a strict time 

limit. In this paper, the computational time and solution quality of this algorithm is compared 

against our proposed algorithms. 
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2. BACKGROUND 

In performing a literature review, the research team found that commuter rail is 

increasingly being used for a variety of non-commute purposes during the off-peak periods and 

on weekends. The majority of commuter rail systems connect to other transit routes and only a 

few seem to utilize circulator, or shuttle, systems to provide passengers access to their final 

destinations (these include Austin, Albuquerque, Nashville, and New Haven). Interestingly, the 

feasibility studies do not seem to account for the impact of a well-designed collector-distributor 

system on quality of service and ridership numbers 1, 2, 3, 4, 5, and 6. While only a limited 

number of customer satisfaction surveys were found, in all these surveys were indications of the 

significant impact of a feeder bus system on commuter rail ridership e.g., 5 and 6. For example, 

for the Tri-Rail commuter rail service in southeast Florida, the limitations of existing feeder bus 

services are believed to be a constraint in the attainment of the system’s ridership potential. The 

transit systems that currently provide feeder bus services are not designed to serve the commuter 

rail corridor, but are oriented to serving urban areas along the coast, which is east of the 

commuter rail line (Shaw, 1989).  

In general, the conclusion of this literature review is that commuter rail service is 

transitioning from its original role of serving work commute trips and peak hours to serving 

other trip purposes and operating during non-peak hours as well as weekends. Thus, circulators 

are becoming even more popular and significant in encouraging rail ridership. These findings 

emphasize the importance of (and increased market for) demand-responsive circulator systems, 

as demand for commuter rail can vary significantly throughout the day and thus a demand-

responsive system can significantly minimize the cost of operation as compared with a fixed-

route circulator system. Additionally, this literature review determined the scale at which the 

problem should be addressed. The feeder bus system, depending on the range of commuter rail 

service, has the potential to accommodate the demand spatially. These findings are important 

when developing formulations and heuristic methods to solve the optimization problem.  

 

Previous Network Design Solutions 

Previous work on the bus transit route network design problem involved finding a bus 

transit route network configuration and other associated operational decisions that achieve a 
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desired objective with a variety of constraints. Depending on the problem characteristic and 

modeler’s perspective, objective and decision variables can be defined in various ways. Kuah 

and Perl (1988) considered both user travel cost and transit agency operation cost while 

formulating a feeder bus to rail access system. Dubois, Bel, and Llibre (1979) argue that 

minimizing the total travel time is an appropriate objective for modifying a transportation 

network to better serve its existing demand. Instead of including operation cost in the objective 

function, they include a budget cost constraint. Ceder and Israeli (1998) include empty-space 

hours of vehicles in their model objective to represent unproductivity from the transit operator 

side. Lee and Vuchic (2005) contend that minimization of user travel cost is a proper objective 

for public transit agencies; however, for private transit agencies, profit maximization would be 

more appropriate. The combination of the two objectives, which represents social benefit 

maximization or social cost minimization, tends to be favored by transit planners. 

 Jaw et al. (1984) presented a heuristic algorithm for a time-constrained version of the 

multi-vehicle, many-to-many “Dial-A-Ride” system problem (this system is discussed in Section 

3). The time constraints used in this study consist of (1) the time difference between the actual 

pickup or delivery of a customer and the desired pickup or delivery time and (2) the maximum 

customer riding time. They defined the objective function such that it balances the cost of 

providing service with the customers’ preferences for pickup and delivery times close to those 

requested and for short ride times. 

 In a study done in 2000 in the San Francisco Bay Area about traveler response to a 

personalized demand-responsive transit system, Khattak and Yim found that in general, people 

take time to carefully plan their commute, determining their best option by weighing several 

different factors such as travel, walking, and waiting times; cost; safety; and accessibility 

(Khattak and Yim, 2004).  

 Lam and Xie (2002) conducted a study in Singapore that examined passengers’ path 

choices in a complex transit network. A survey asked passengers to choose between three transit 

path options between the same origin and destination. Each path varied in walking distance, wait 

time, fare, and number of stops and transfers. The passengers were not informed of the total 

travel time of the three paths. Without that information, the responses were nearly evenly split 

between the three path choices. Next, the travel times of each path were revealed and the 

passengers were again asked to choose. Just over half of those surveyed chose the path with the 
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shortest travel time. This result shows that passengers prefer a shorter travel time, even if it 

means a longer walk or more transfers. However, it also reinforces the fact that, although travel 

time is a very important factor in passengers’ decision-making, mode choice is based on a trade-

off of many factors, not just travel time. Nearly half of the passengers chose the two longer paths 

of travel, presumably because they found some advantage in the other aspects of the trip, such as 

the shorter walk or the fewer stops.   

 A major component of transit accessibility is walking distance. Convenient walk access 

on both trip ends is very important to make a transit option viable. Roughly a 5-minute or 

quarter-mile (about 400 meters) walk is generally accepted as reasonable transit walk access. 

Crowley et al. (2009) examined travel data from the travel-habits database of Toronto, Canada, 

to analyze how walking distance to transit affects mode choice. Part of the study compared 

walking distance from a subway station to the mode share of passengers accessing the subway by 

walking. For those within 200 meters of the station, the mode share was at 36%. The mode share 

decreased slightly to 32% as the walking distance increased to between 200 and 400 meters, then 

decreased significantly to 17% as the walking distance increased to between 400 and 800 meters. 

Some studies report that the perceived “cost” of time spent walking is two to three times more 

than the “cost” associated with in-vehicle time. 

 Beimborn et al. (2003) looked at accessibility and connectivity and the relationship they 

have on mode captivity and mode choice. A study was done in the Portland, Oregon, area using 

data from various sources. The results of the analysis showed that people who have the option of 

using either transit or automobile are influenced little by the overall travel times of the modes. 

The access to and time spent waiting for the transit system are much more important issues when 

a passenger is deciding whether or not to use a transit system.  

In the simplest case, a simple network with a set of nodes to be visited by a single vehicle 

was considered. In this case, the nodes may be visited in any order, there are no precedence 

relationships, the travel costs between two nodes are the same regardless of the direction 

traveled, and there are no delivery-time restrictions. In addition, vehicle capacity is not 

considered. The output for the single-vehicle problem is a route or a tour where each node is 

visited only once and the route begins and ends at the depot node. The tour is formed with the 

goal of minimizing the total tour cost. This simplest case is referred to as a traveling salesman 

problem (TSP), which was used for the preliminary analysis in this study. The formulation of 
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this problem is based on the formulation developed by Lownes (2007). However, instead of 

having a set of centroids, this set now represents a set of demand calls received. This analysis 

used an adaptive tabu search method that consisted of an initial solution by nearest neighbor and 

swap-and-insert method for neighborhood search strategy.  

The project team reviewed the literature on the application of a heuristic tabu search to 

TSPs and closely related problems, such as vehicle routing problems (VRP). Heuristic 

optimization methods trade optimality of the solutions that they output with execution times. 

Many details go into the structure of a mathematical programming problem and a heuristic 

method (a tabu search in this context), which are not within the scope of this report. Papers on 

the application of a tabu search to these problems were classified based on problem size; 

generation of initial solutions; selection of moves; the choice of short-, medium-, and long-term 

memory structures; and aspiration criteria.  

It is interesting to note that even though heuristics are meant to handle large problems, 

most current research deals only with TSPs with up to 100 nodes. A tabu search is an 

improvement heuristic. It needs to start with a feasible tour in the graph describing the TSP. 

Overall, eight methods were identified to generate initial solutions. Some of these methods 

include nearest neighbor, sweep, and Solomon. A tabu search, as an improvement heuristic, 

moves from one solution to the next in search of an optimal solution. The method of moving 

from one solution to another is described by a set of rules and called a move. The set of all 

solutions that can be reached from a given solution using a pre-specified move is called the 

neighborhood of the solution. A variety of move types have been used in the literature in the 

context of TSPs and related problems, including the following: 2-opt move, insertion, vertex 

insertion, and generalized insertion. (For more information about TSPs, please consult Gendreau 

et al., 1999; Johnson et al., 2002; and Reinelt, 1991).  

This problem class is appropriate for the preliminary analysis of this problem. In general, 

this problem class is appropriate for a single VRP or when the service area is divided up into 

subareas of service and a single TSP optimization is conducted within each region. However, 

consideration of service time windows for this problem is essential as passenger pickup time 

determined by the optimization algorithm cannot be violated outside a predetermined time frame 

(or will be costly to violate). The provision of a time window into the formulation of this 

problem is part of the ongoing work. The simple TSP formulation uses some assumptions that 



9 

may be unrealistic. As the project progresses, these assumptions will be relaxed and other 

variations of the TSP will be considered, as discussed next. 

An extension of the TSP, referred to as the multiple traveling salesman problem (MTSP), 

occurs when a fleet of vehicles must be routed from a single depot. The goal is to generate a set 

of routes, one for each vehicle in the fleet. The characteristics of this problem are that a node 

may be assigned to only one vehicle, but a vehicle will have more than one node assigned to it. 

No restrictions are placed on the size of the load or number of passengers a vehicle may carry. 

The solution to this problem will give the order in which each vehicle is to visit its assigned 

nodes. As in the single-vehicle case, the objective is to develop the set of minimum-cost routes, 

where “cost” may be represented by a dollar amount, distance, or travel time. This class seems 

appropriate if the number of vehicles is determined prior to the optimization and we are assured 

that demand can be accommodated through this predetermined number of vehicles. The MTSP 

naturally seems to be an appropriate next step for this study.  

If the capacity of the multiple vehicles is restricted and coupled with the possibility of 

varying demands at each node, the problem is classified as a VRP. The VRP is more versatile 

than any kind of TSP, but is more difficult to solve optimally. The VRP and application of tabu 

search algorithms to this type of problem have been more studied recently. While tabu search 

algorithms developed for TSPs and VRPs are partially similar, structurally they can be 

significantly different. Based on the findings of a comprehensive study of tabu search approaches 

for the VRP, algorithms by Gehring and Homberger (2001) and Cordeau et al. (2001) show the 

best performance. 

 

In this paper, we propose a mathematical model to solve the circulator service network 

design problem (CSNDP) and develop methods to solve for the optimal routes in a demand-

responsive manner. To have the solution methods running for an optimal route for each set of 

passengers coming into the station, the computational time for each run of the algorithm should 

be limited to no more than 5 minutes, which is the time for all passengers in the train to get off 

and walk to the bus stop. This constraint poses a challenge to the algorithm development. This 

research fills the gap in the literature, since it formulates the model for and rapidly optimizes a 

seamless transfer feeder bus system. The rest of this paper is organized as follows. Section 3 

gives the bi-level model formulation of the CSNDP problem, where the upper level aims to 
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minimize the total costs incurred by both transit operators and transit users, and the lower level 

accounts for passenger travel behavior to minimize their own walk trips. Section 4 explains the 

adaptive tabu search algorithm designed for solving this CSNDP problem. Four local search 

strategies are proposed. In Section 5, computational performance of the four adaptive tabu search 

algorithms is evaluated and compared against the enumeration method and the tabu search 

algorithm proposed by Lownes (2010). Conclusions and further research are given in the final 

section.  
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3. MODEL DEVELOPMENT 

Designing a Collector Bus System 

A comprehensive investigation was conducted to classify the design of a collector bus 

system under a well-defined class of mathematical programming problems depending on certain 

characteristics of the service delivery system, such as size of demand and spatial coverage, 

consideration of capacities of the vehicles, and routing and scheduling (time windows) 

objectives.  

A limited number of studies examine  the use of a demand-responsive transportation 

system concept in designing collector-distributor systems. The most famous of these, conducted 

in the early 1970s, is what is called a “Dial-A-Ride” Transportation (DART) system, which 

mostly addresses many-origins-to-many-destination problems. Wilson et al. (1971, 1976) 

developed a real-time algorithm for a DART system in Haddonfield, NJ, and Rochester, NY. 

They defined their objective function as the weighted sum of current passengers’ wait times, ride 

times, given arrival times, and additional distance travelled. Wilson et al. (1980) found that 

DART system demand is quite sensitive to the level of service provided; thus, collection and 

delivery times become a crucial component of DART problem structure. This study also noted 

the importance of developing measures of reliability as well as models to predict both levels of 

reliability and the impacts of reliability on demand. Perhaps, to some extent, dissatisfactory 

DART operation can be attributed to lack of constraints on passengers’ wait and riding times. 

Although most studies aimed to minimize a combined cost to both operators and users, the 

resulting quality of service was not satisfactory to consumers, which resulted in low demand. 
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4. PROBLEM DESCRIPTION 

The real-time CSNDP problem aims to provide an optimal route to collect each set of 

passengers from their work locations and deliver them to the commuter rail station on a real-time 

basis. The solution methods determine both the bus stop locations and the route connecting them. 

In this operation, all the candidate stops in the service area (the small circle nodes in Figure 1) 

are shown to the rail users. 

 

 

Figure 1. Network Representation. 

 

The candidate stops are included in set ;  represent individual candidate stops, 

where . Rail passengers will contact the operating center to request pickup at their 

indicated bus stops. We assume that the headway of the commuter rail system is 30 minutes and 

the first PM peak hour train arrives at the station at 5:30 p.m. and every 30 minutes is counted as 

a time period. Starting from 5:00 p.m. as time point 0, 5:00–5:30 p.m. is regarded as period 1, 

5:30–6:00 p.m. as period 2, and so on. The set of time periods is represented as T. In this 

problem, In this circulator, we propose to have both fixed stops and responsive 

stops. Hence, in the model formulation, we have  and  as subset of set , where  is the set of 

fixed stops in period  and  is the set of responsive stops in period . The detailed information 

about fixed stops and responsive stops will be discussed later. For each time period , the fixed 

stops set and responsive stops set compose the set . 
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In this problem, the number of vehicles  dedicated to this service is defined as a 

constraint in the model formulation rather than a decision variable. The system provides 

maximum service while minimizing the total cost. Related costs include two parts: route costs 

and penalty cost. Route costs account for drivers’ wages and benefits, equipment investment, and 

maintenance and fuel/gas costs, and is calculated as the sum of fixed costs and operational costs. 

For every possible combination of stops, a small TSP will be solved for the minimum travel time 

along the stops and this minimum travel time is converted into operation cost. In this model, the 

route cost  is calculated as the sum of the fixed cost and operation cost. The set of all candidate 

routes is represented as  and individual routes  belong to  We have  as a node-route 

incident matrix and this matrix can be considered as a set of column vectors . Each vector  is 

associated with route  and the binary element in the vector indicates whether route covers 

stop  To make sure that the maximum number of passengers is served by the routes, a penalty 

cost is applied to missed fixed stops and missed responsive stops. Since missing two consecutive 

trains is considered unacceptable for this feeder service, we enforce the system to serve the stops 

with demand leftover from the previous time period and these stops are regarded as fixed stops. 

The stops with demand coming in during current time period are regarded as responsive stops. 

The penalty cost for fixed stops is defined as  and penalty cost for responsive stops as . The 

penalty costs associated with not providing service to fixed points are much higher than those 

applied to the responsive points. If the available vehicle is able to fulfill the task, the problem is 

an optimal route combination choice that achieves the least total cost. Otherwise, demands from 

the last period have priority over the new arrivals. The high penalty cost drives the solution to 

meet the demand for the fixed stops first. 

During each time period, we have real-time passenger data  as the new demand 

requesting service. The decision variables  indicated whether route  is selected in time 

period . At the end of each period we have the state variable  showing the amount of demand 

left out of service at each stop. The relationships between decision variables and state variables 

are shown in Equations (1) and (2). Depending on whether there is demand carried over from the 

last period  for stop , the model will identify whether stop  is fixed or responsive during 

this period , as shown in Equations (3) and (4). 
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At time point 0, we assume that service is starting and there is no demand left over from 

previous periods, as shown in Equation (1). At the end of each period, the demand left out of 

service is calculated as shown in Equation (2). The term shows whether stop is 

covered by any selected route. If it is covered, the leftover demand and newly arriving demand at 

this stop will be become unserved demand at the end of current period. This unserved demand is 

a state variable updated at the end of every period for all the stops and the mathematical model 

will apply a penalty to these stops. The operating center will determine on a real-time basis the 

best route combination for each time period to reduce the overall cost to the system along the 

peak-hour time horizon.  

 The feeder service has a goal to keep rail users from missing two trains in a row. With the 

total demand staying within the capacity of the available vehicles, the proper parameter setting—

the penalty cost  and —will force the service to achieve this goal. We have the following 

model: 

For each time period , 

 

 

 

     

where Equation (3) and (4) hold for and .  

 

The objective function in (5) collects the total route cost and penalty costs along the 

planning time horizon. The first term is all the route costs across all the time periods. The second 

term is the penalty costs applied to the fixed stops where passengers were not served for more 
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than one time period. The last term is the penalty cost applied to responsive stops with new 

demand coming in during the current period but left out of service for this time period. 

Constraint (6) sets a limit on the total number of routes at each time period, which should be 

more than the number of available vehicles. Constraint (7) gives the property of set partitioning 

to our route selection problem. Each stop will be visited no more than once in each time period. 

However, the penalty costs applied to the stops left out of service will be the driving force to 

serve as many nodes as possible. Constraint (8) restricts the route selection variables to a binary 

format. 
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5. RESULTS 

The Tentative Exact Algorithm 

This section presents an exact algorithm based on a column selection method to solve the 

route optimization for each time period, although most work reported in the literature solved the 

transit route optimization problem with heuristic methods. This exact algorithm was developed 

because  the network size (number of candidate stops) for the feeder system is much smaller than 

that of an urban transit network. The small size provides some freedom to explore and improve 

current exact algorithms to solve the problem, as land use information gives us a good idea of 

where demands will be concentrated. Potential bus stops can be identified geographically before 

the service is put in place. That is also how the service is going to be operated; the transit 

operator provides users with all the candidate stops and allows them to choose a stop from the 

map according to their preference.  

Our tentative solution methods take advantage of knowing possible bus stop locations in 

advance, establishing the route information database through an enumeration process. Each route 

starts from and ends at the rail station, which is always in the route. We evaluate all possible 

combinations of candidate stops, and solve it as a TSP to get the minimum travel time. The 

database will store minimum route costs for all possible stop combinations and our solution 

method will use them as pre-calculated parameters. Our feeder system is designed so that every 

bus leaves the station as the train leaves and comes back to the station before the next train 

arrives. The minimum travel time for each route should not exceed 30 minutes, which is the 

headway for the commuter rail. The travel cost converted from the travel time, together with the 

fixed cost for each route, will determine the route cost. For each route, we have a binary vector 

 with a dimension equal to the total number of candidate stops in route , a vector  with a 

dimension of the total number of stops covered by the route and showing the order of visits to 

stops in route , and a cost value . 

We consider the LP-relaxation obtained from the binary IP (5)–(8) by replacing (8) with 

 The column selection method applied to the primal LP-relaxation, or the LP-master 

(LPM) consists of two steps: initialization and pricing. 

Initialization. Construct a restricted LPM by restricting the LPM to the columns that are 

vectors with one element equal to one, which means each route covers only one stop. Solve the 
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restricted LPM to get the primal optimal solution  as well as the dual optimal solution , 

where  and  are the dual variables corresponding to constraint (6) and (7), respectively. 

Pricing. Select a column whose reduced cost is negative. If there is no such column, the 

current solution  is an optimal solution of the LPM. Otherwise, enter such a column to get a new 

pair of solutions  and  and repeat this pricing step. 

The pricing step amounts to finding a variable  of the th route whose reduced cost is 

negative. In terms of the dual variables , the reduced cost  is given 

by  where . If  for all routes, the 

current solution is optimal. Otherwise, we enter the corresponding column to the LPM to 

improve the solution. In our algorithm, the pricing step simply evaluates all possible routes for 

their reduced cost and then selects the most negative column to enter the model to get a new pair 

of primary and dual solution values. 

 

The Improved Exact Algorithm 

As the tentative solution methods take advantage of knowing possible bus stop locations in 

advance and establish the route information database by an enumeration process before 

computing the route configuration, the improved algorithm allows us to generate the new column 

to enter the problem without intensive pre-calculation based on stop location prediction for all 

the possible route information.  

The improved method relaxes the integer programming model into a linear one by 

dropping the integrity constraints in the original model and then solves the linear programming 

model based on the Dantizig-Wolfe decomposition method. The Dantzig-Wolfe method starts 

from an initial solution and generates the columns for entering the problem based on their 

reduced cost until no more candidate columns have negative reduced costs. In the column 

generation step, we always choose the columns with the most negative cost. This sub-problem 

transforms into a constrained shortest path problem. 

Dropping the integrity constraints from Model (5)–(8), the model (5)–(7) becomes a 

linear program. Assuming  and are the dual values corresponding to Eqs. (6) and (7), the 

reduced cost for a new column  is 
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Since the column with the most negative reduced cost enters the problem, the pricing step 

becomes a constrained shortest path problem with respect to the following arc cost:  

 

 

where  

Dynamic programming is widely used to solve the elementary shortest path problem with 

resource constraint (ESPPRC). We illustrate the exact algorithm for solving the ESPPRC 

developed by Feillet (2004) in the following sections. 

 

Shortest Path Problem with Resource Constraint (SPPRC) 

Before we introduce algorithms for the ESPPRCs, we give a brief illustration of the 

problem context and solution method of SPPRC. SPPRC is a relaxed version of ESPPRC. 

Let  be a network where  is the set of arcs and  is the set of nodes 

including an origin  and a destination . A cost  is associated with each arc . The 

cost of a path is defined as the sum of cost of the arcs of the path. Let  be the number of 

resources and  be the consumption of  resource along arc . For each resource , each 

node  has the feasibility window  such that the consumption of resource  along the 

path from  to  is constrained to belong to the interval . If the consumption resource  is 

lower than  when the path reaches , it is set to . Note that this notation is natural for the time 

resource, but also allows us to represent capacity constraints by defining intervals  on 

nodes, where  is the capacity limit. For the SPPRC a node can be used more than once in a path 

(  can be equal to , ). The objective is to generate a minimum cost path from  to  that 

satisfies all the resource constraints.  

Desrochers’ algorithm is a label-correcting reaching algorithm. It is an extension of the 

Ford-Bellman algorithm, taking resource constraint into account. Desrochers defines a state for 

each partial path from the origin node  to a node  as , where  is the amount of 



20 

the  resource required to reach node  using a path from  to , and a cost . 

For a given node , the feasible states respect the resource constraints at this node, and they form 

a set . Each path has a defined label as 

. These labels represent both the state value and the cost of a path . For 

simplicity,  is later on used to represent the state values. Each node receives labels throughout 

the computation. For two distinct paths  and  from  to  associated with labels  

and , they define that  dominates  or  if and only if 

 for  and . Non-dominated labels are treated 

until no new labels can be created. When a label is treated, all its new labels are extended from 

its associated node toward every possible successor node. The dominance rules are for saving the 

computational effort. 

Elementary Shortest Path Problem with Resource Constraints (ESPPRC) 

The pricing step as a sub-problem to our column generation method is actually an 

ESPPRC. In ESPPRC, paths must be elementary, so that no node can be visited more than once 

in a feasible path. As pointed out by Feillet, adjusting Desrochers’ label-correcting algorithm to 

solve the ESPPRC instead of the SPPRC is not trivial: “One can neither find an optimal 

elementary path by just solving an SPPRC and selecting an elementary path among the set of 

optimal paths nor by solving the SPPRC and by enforcing that only elementary paths be 

generated at each step of process (Feillet et al., 2006). The major difficulty in modifying the 

labeling algorithm for ESPPRC comes from the fact, as discussed by Chabrier (2006), that a 

label cannot be directly fathomed using the dominance rule defined for SPPRC. If we denote 

 as the set of nodes in the partial path , we cannot prolong  to  if we already have 

 in ESPPRC. In this case, even if some partial path  dominates some other partial path 

, a continuation of  with some node  might be useful later  

Beasley and Christofides proposed to include in the path label an extra binary resource 

for each node . This resource will take value 0 initially and will be set to 1 when the node 

is visited in the label. Feillet adapted this idea to Desrocher’s label-correcting algorithm. They 

add another resource , which counts the number of nodes visited by a path  to compare the 
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label more efficiently. So in the label definition, each path  from the origin to node  is 

associated with a state , corresponding to each resource 

consumption, the number of visited nodes, and the visitation vector (  if the path visits 

node , 0 otherwise). 

The new dominance rule is the following: 

Let  and  be two distinct paths from  to  with associated labels  and 

. Then  dominates  or  if and only if  for 

,  for  and .  

Feillet proved the claim that during the execution of the modified algorithm, we need 

only to consider non-dominated paths. A complete description of the algorithm is given below. 

Description of the Algorithm 

Denote the index set of labels on node  by . For each , there is a corresponding 

path  from the origin  to  having state  and cost . We refer to  as the label. We 

denote  as a function that returns the label resulting from the extension of label  

towards node  when the extension is feasible; otherwise nothing is returned. For the ESPPRC, 

feasible extensions return new labels satisfying all the resource constraints, the physical 

constraint defined in , and the resource constraints for node visitation defined in 

. We define the procedure  to keep only non-dominated labels in the list 

of labels . 

 

Step 0: Initialization 

 Set the label associated with the partial path starting from the origin  as 

 and the labels associated with the partial paths from the origin  to a node  as 

 for all . 

 Set  for each . 
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Step 1: Selection of the label to be treated 

 If  then STOP; all efficient labels have been generated. 

 Else choose  and  and select the label 

 /*so that  is lexicographically minimal*/. 

 

Step 2: Treatment of label  

 for all  

   if  then 

   

      enddo 

      set  

 goto Step 1 

 

In the pricing step sub-problem, we define rail station represented by  as the origin , 

and a copy of the rail station represented by  as the destination . Note  is the candidate 

bus stop set. Node  is just a virtual copy of the rail station. It has exactly the same travel 

time and cost information to all the other nodes in set , and its travel time and cost to the origin 

 are zeros. Besides, the virtual node  has a virtual dual variable  with value zero. The 

origin, the destination, and all the other candidate bus stops form the node set . We assume that 

the network is well connected, and the arc set  includes all the links from every node to every 

other node in set . With the previously described solution method, we are able to find the 

candidate route with negative reduced cost as the pricing condition. 

 

Computational Results 

The network, which contains 10 candidate bus stops, was developed from the Martin 

Luther King, Jr. Station network for testing the exact solution method. Figure 2 shows the 12-

stop network, in which the locations of candidate bus stops and shortest driving routes 
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connecting these stops over the urban street map are highlighted. In this network, demands might 

be waiting at or coming into each stop.  

 

 

Figure 2. A Bus Circulator Network Located in Austin, Texas. 

 

If we consider the problem at the first period, all stops will be responsive—no demand is 

left out of service from the last time period so no stop is labeled as a fixed stop. For this small 

test, we know that to cover all the stops with minimum total route costs, we need at least three 

vehicles. The test results start with three available vehicles and no fixed stops in the route. In 

Figure 3, the objective function value or total costs are shown with the penalty cost and the 

increment of penalty cost applied to each unserved responsive stop. We can see that as the 

penalty cost per stop increases, the objective value, which is the sum of route cost and penalty 

cost, also increases. If the operator wants to minimize unserved or delayed users, they can simply 

increase the penalty cost for unserved stops to drive the model to cover more stops to avoid high 

penalty costs. In this model, route costs are the only cost to transit operators; thus, as there is 

more emphasis on meeting all the demand, the route cost increases. The trend of penalty costs is 

different from both total costs and route costs. The curve of penalty costs can be regarded as 
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concave. When the increment of unit penalty cost is not significant enough to affect the optimal 

solution, the total penalty cost increases linearly with the unit penalty cost.  

 

 

Figure 3. Route Cost and Penalty Cost with Three Vehicles. 

 

Figure 4 shows the cost performance with only two vehicles available for the feeder 

service. Similar to the results in Figure 3, there are no assumed fixed stops in this test, which 

means that no passengers from the last period missed their train, and all travelers waiting for 

service are new arrivals during the current period. We can see from the results that no matter 

how much we increment the unit penalty cost applied to unserved demand, route costs stay 

constant. This is due to the limitation of the vehicle availability. Since the number of available 

vehicles becomes a tight constraint in this case, increments of unit penalty cost will only increase 

penalty cost and then total costs, but do nothing to change the route configuration. 

 

 

Figure 4. Route Cost and Penalty Cost with Two Vehicles. 
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The above two cases both assume that there are no fixed stops; however, the period after 

the period shown in Figure 4 would be a different case. There is demand unserved from the last 

period, which means passengers already missed one train. One might logically assume that the 

transit operator would want to help passengers avoid missing a second train. To simulate this 

desire, we set a much higher penalty value. Assume that this is the intermediate time period and 

demand at some stops missed the train from the last time period. The cost performance with two 

available vehicles is shown in Figure 5. 

 

 

 

Figure 5. Cost Performance with Fixed Stops and Two Vehicles. 

 

The total costs increase when more stops are considered fixed stops. From the modeling 

perspective, more fixed stops mean more constraints in the model and a smaller feasible region. 

In a minimization problem, the objective value increases as the feasible region shrinks. From the 

practical point of view, to be able to serve a larger demand, transit operators have to pay more, 

either as route costs or penalty costs. As we can see, when more stops are considered fixed stops, 

the total penalty costs increase. Breaking these penalty costs down, the model first avoids 

penalties applied to fixed stops shown as solid black bards in Figure 5. The penalty cost is only 

applied to responsive stops shown as grey bars when there are zero to two fixed stops. When 

more fixed stops come into the model, the resource limit becomes the constraint and it is not 

possible to serve all the fixed stops.  
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6. CONCLUSIONS 

 This report formulates the circulator service network design problem into a nonlinear 

mixed integer programming problem. The model formulation is rooted from minimization 

objectives for both transit operators’ operation costs and transit users’ travel costs. As a special 

case of VRP, this integer programming problem presents very challenging computational 

complexity. 

 To find an efficient procedure that could be implemented for real-time operations, we 

proposed and tested a column-generation-based solution method. The computational experiments 

suggest that both the solution quality and computational efficiency would meet the requirement 

for a real-time operation. 

In this research, we only modeled and solved a collective circulator service network 

design problem, which describes the bus circulator operations in the origin end of workplace-to-

home commuting trips. The fleet of buses is used for picking up passengers from selected bus 

stops close to workplaces and dropping them off at the rail station during the afternoon 

commuting period. This study treated each bus circulating tour as an independent optimization 

problem without considering the cooperation and coordination between different buses in the 

fleet. From the efficiency perspective, it is much desirable to formulate a larger circulator service 

network design problem, which operates a fleet of buses as a whole instead of operating each 

individual one separately. Such a fleet-based circulator system can be readily implemented by 

using the current information and communication technologies.  
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